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A High Average Power Broad-Band

Ferrite Load Isolator for S Band*

A broad-band high average power S-
band load isolator has been developed by
using a dielectric loaded waveguide and a
composite ferrite. A partial height dielectric
was centrally mounted on the broadwall of a
vertically constricted S-band waveguide,
Fig. 1. The cross section dimensions of the
dielectric were chosen to increase the oper-
ating bandwidth of the isolator. Adjacent to
either side of the dielectric 2 thin flat slabs
of ferrite were positioned. A large ratio of
ferrite width to thickness was chosen to
achieve maximum heat dissipation. The
ferrite element was composed of 2 ferrite
types. Towards the source end of the isolator
a long length of a narrow resonance line-
width and low dielectric loss ferrite was
mounted. This portion of the ferrite element
provided the majority of the isolation loss.
However, since this ferrite possessed only a
moderate Curie temperature the average
effective power handling capacity of the
isolator composed of this ferrite alone was
limited to less than 1600 watts. To maintain
a large value of the isolation loss in the
presence of an appreciable load mismatch
a second ferrite piece of a higher Curie tem-
perature ferrite was employed. A small
length of the higher Curie temperature
ferrite was mounted adjacent to the first
ferrite and towards the load end of the
isolator. The length of the second ferrite was
chosen to provide 3 to 4 db isolation loss.
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Fig. 1—Basic elements of the high-power
S-band isolator.

A skew transverse magnetizing field was

employed which assisted in increasing the
bandwidth of the isolator. Magnetic field

skewing was produced by magnetizing the

upper and lower permanent magnets un.

equally. A reduction of magnet size was
accomplished by employing a vertically
constricted waveguide at some sacrifice of
the peak power handling capacity.

High average power performance was
measured with a nominal 600–800-watt CW
magnetron tunable over the 2.5 to 3.7-kmc
band. Isolation loss was checked at low and
high powers. Measurements of insertion loss
were made in detail at low power and
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checked at selected frequency points at high

power. This simplification in measurement
was permissible since it was found that
insertion loss decreased very slightly at the
higher average powers.

In addition to isolation and insertion
loss the power absorbed by the ferrite was

determined with the isolator operating at
high average power in the reverse direction.

This technique enables the simulation of
high average power operation with moderate

power sources. From a knowledge of these
quantities it is possible to compute the
effective average power capacity, Peff, of
the isolator when operating into a given load
mismatch as follows:

P.ff (1 – ~F) i- rTFpeff (1 – Tft) = Pa&

where P,b. is the average power absorbed
by the ferrite in the reverse direction.

r is the power reflection coefficient of

the load.
TF is the isolator power transmission

coefficient in the insertion loss direc-

tion.
TR is the power transmission coefficient

in the isolation loss direction.

The computed effective power capacity
yields a value which is less than the actual
power capacity. This discrepancy occurs
because the present measurement of the
absorbed power is made under conditions
wherein the heat absorbed is concentrated
in a limited portion of the ferrite length. In
practice a large proportion of the dissipated
power would be more uniformly distributed
throughout the sample as a result of the
insertion loss absorption.

For the ferrites and ferrite geometry em-
ployed in these studies, high-power non-
linear phenomena were not evident. In ex-
perimental circumstances, where ferrites of
lower resonance line width or higher satura-
tion magnetizations are employed, or where
higher RF powers and ferrite geometries
more susceptible to spin wave instabilities
are utilized, direct measurement of isolator
performance at the rated power levels must
be made to evaluate the nonlinear effects.

Fig. 2 presents performance data taken
for a water cooled isolator operating at 2 ef-
fective power levels; milliwatt and greater
than 1650 watts CW (2:1 load mismatch).
The ferrite element consisted of a combina-
tion of magnesium manganese and nickel
ferrite slabs positioned as shown in Fig. 1.
The isolation to insertion loss db ratio mani-
fested while the unit was absorbing 400
watts CW in the reverse direction was found
to be in excess of 20/1 over greater than 15
per cent bandwidth.

Fig, 3 presents performance data for an
isolator constructed from a single type of
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Fig. 2—Performance data for a high-power load iso-
lator using magnesium manganese R-1 and nickel
ferrite 106.
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Fig. 3—Performance data for a high-power load iso-
lator using Nio.yCuo.~Mbo.ozFeL,sOa ferrite.
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Fig. &Performance data for a high-power load iso-
lator using Nio.rCuo.,MnO.ozFe,. ~0~ and nickel fer-
rite. ferroxcube 106.

nickel ferrite of composition Nio, 7cu0.8-

Mno,ojFel.sOi. A noticeable frequency shift
of the peak isolation occurs as the power is
raised. The shift of the resonance peak to-
ward the higher frequencies arises from the
decrease of saturation magnetization of the
ferrite that accompanies ferrite heating.

Fig. 4 shows performance data of an iso-

lator constructed with the nickel ferrite used

in Fig. 3 plus a portion of a higher Curie
temperature nickel ferrite. Ferroxcube 106,

positioned on the load end of the unit. The
effective power capacity when operating

into a 2/1 load mismatch exceeded 3000
watts CW for 14 db or greater isolation and
0.6 db or less insertion loss throughout the
2.8 to greater than 3.6 kmc band ( >25 per
cent bandwidth). A greater than 3700-watt
effective average power capacity is shown
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for curve 1?. A comparison of the data of

Figs. 3 and 4 reveals the improvement in

average power handling capacity obtained

by using a high Curie temperature tip of

ferrite positioned on the load end. The trend

of decreasing isolation loss atthe low end of

the band as the effective power is raised is

markedly reduced in Fig. 4, where, for the

composite ferrite isolator, isolation loss at
2.9 kmc is greater than 15 db for an effect ive

a~,erage input power of 3200 watts. Without

the high Curie temperature ferrite the isola-

tor of Fig. 3 displays a reverse loss of <13 db
at 2.9 kmc for an effective average input of
only 1500 watts.

E. N. SKOMAL
Sylvania Microwave Phys. Lab.

Mountain View, Calif.

Reflection Coefficient of E-Plane

Tapered Waveguides*

In a paper by Matsumaru/ formulas of
the input reflection coefficients of the line-
arly and sinusoidally E-plane tapered wave-

guides are given. Excellent agreements be-
tween the theoretical and experimental re-

sults have been found in both cases. In this

note we wish to add some analytical re-

marks.

The analysis given in the above paper is

different from the rigorous one given by

Walker and Wax. z The latter led to a non-
linear differential equation

where R is the reflection coefficient, .2(x) is
the surge impedance of the tapered line, and
~ = ~ +~~ is the wave propagation constant.

If the tapered line is loss-free, then we have
~ =~~, On the assumption that the phase

constant, @ is independent of x, and that

2/2<<1, Bolinder3 obtained an approximate
expression of the input reflection coefficient

for a finite tapered line of length J, termin-
ated by Z(0) =21 and Z(l) =22 at each end.

It may be shown that Mr. Matsurnaru’s

equations (4) and (12) are equivalent to (2)
in this communication. On substitution of

the surge impedance of a sinusoidal taper

ilito our (2), we obtain his (12). Substituting
the surge impedance of a linear taper

z(x) = z, + (Z2 – zl)x/J (4)
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iuto our (2), and letting x = y+l/2, we ob-
tain his (4), with its independent variable x
being replaced by y. Therefore, it appears

that Bolinder’s assumption of Rz<<l should

also apply to Mr. Matsumaru’s analytical

results. This is not, however, stated explicitly

in his paper.

For a linearly tapered line defined by (4),

(2) may be integrated exactly in terms of Ci

and .%, the cosine and sine integrals. The in-

put reflection coefficient is

R = +4w{ [Ci(m) – Ci(z.L,) ]

– j[si(ts,) – Si(ZJl) ] ] (5)

where ul=2f31/(k -1), uz=2@k/(k -1) and
k = Z~/Z,. This expression appears to be
somewhat simpler than Mr. Matsumaru’s

(8), and his (7), a binomial-expansion ap-
proximation, is not necessary in this case. If a

change of variable, u = 2ff (g–l +x), is made,

his (5) leads directly to the above result—

our (5).
In the treatment of a sinusoidally ta-

pered line, noting that r= (Z1 –ZJ/(Z,+ZJ
tends to zero first, and letting t tend to zero
next, Mr. Matsumara showed how his (15)

becomes

R = (Z, – Z,)/(Zz + Z,),

the reflection coefficient of two directly con-
nected waveguides. It is felt that this state-
ment, although correct, might mislead one

to think that Matsumaru’s (12) is exact. To

clarify this point, we let 1 in his (15) tend to
zero first and retain the higher order terms;

(15) then becomes

hmoR =
(%M%%Y+ “ “ “

=~ln~.

It is seen that as 1 tends to zero, R tends to ~
in (22/2,) rather than to (Z, –ZJ/(Z~+Z,).
This limiting case indicates somewhat the

aPPrO~imate nature of Matsumaru’s (12),
from which his (15) is derived. It might be

said that the approximation becomes in-

creasingly good as r tends to zero; then

It is also noted that our (5) also becomes

~ in (ZZ/ZJ as J tends to zero. As long as we
use our (2) or its equivalent—Mr. Matsuma-
ru’s equations (4) and (12)—this is true, re-
gardless of the nature of Z(x) or type of

taper. This can be seen directly from our
(2), in which the phase factor tends to unity

as 1 tends to zero. Direct integration gives

the proof.
Eq. (2) in this demonstration may be

considered as the first approximation of the

solution to our differential equation (1),

which—together with higher order approxi-

mations—has been discussed elsewhere.d [n
general it may be said that if the length of

taper is longer than half of a guide-wave-
length, the second order approximation has
no significant effect,

RICHARD F. H. YANG

Andrew Corporation
Chicago, Illinois

4 L. Solymar, “On higher order approximations to
the solution of nonuniform transmission lines, ” PROC,
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.4dhor’s Comment5

I am grateful to Mr. Yang for his re-

marks regarding my paper; h’is detailed re-
marks strengthen some of the weak points

in it.
First, his anal ysis of his (4) is known to

me, and I have no further comments to

make on it. Next, his formula (5) is probably

quite useful in calculating the reflection co-

efficient of linear tapers. In the latter part of

his communication, he has made some re-

marks on the limiting cases of R. Although I
had previously considered these analytical

studies, I did not discuss them fully since
they seemed to be too detailed for my paper.

As I mentioned in my paper, the main

purpose was to present practical design data
rather than detailed analyses. I would like to

take this opportunity to add some comments

orL the experimental data described in my
paper. Figs. 1 and 2, plotted in the K-pIane,
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Fig. i—Results of experiments, part I (ZZ/ZL =2.o).

Data are shown for linear-taper lengths from 4 to
17 cm.

Fig. 2—Results of experiments, part III (ZI/Zj = 2.4).
The normalized sinusoidal-taper length Z/Xg was
varied from 0.5 to 1.0.

show the reflection coefficients of the data

obtained from experiments, parts I and II 1,
respectively. The conically looped circular
loci of R of the linear tapers in Fig. 1 show

the typical behavior for the cases of Z2 >21.
It should be mentioned that the position of

R follows almost the course of one conical

rycle every half-wavelength (4,9 cm). For
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