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A High Average Power Broad-Band
Ferrite Load Isolator for S Band*

A broad-band high average power S-
band load isolator has been developed by
using a dielectric loaded waveguide and a
composite ferrite. A partial height dielectric
was centrally mounted on the broadwall of a
vertically constricted S-band waveguide,
Fig. 1. The cross section dimensions of the
dielectric were chosen to increase the oper-
ating bandwidth of the isolator. Adjacent to
either side of the dielectric 2 thin flat slabs
of ferrite were positioned. A large ratio of
ferrite width to thickness was chosen to
achieve maximum heat dissipation. The
ferrite element was composed of 2 ferrite
types. Towards the source end of the isolator
a long length of a narrow resonance line-
width and low dielectric loss ferrite was
mounted. This portion of the ferrite element
provided the majority of the isolation loss.
However, since this {errite possessed only a
moderate Curie temperature the average
effective power handling capacity of the
isolator composed of this ferrite alone was
limited to less than 1600 watts. To maintain
a large value of the isolation loss in the
presence of an appreciable load mismatch
a second ferrite piece of a higher Curie tem-
perature ferrite was employed. A small
length of the higher Curie temperature
ferrite was mounted adjacent to the first
ferrite and towards the load end of the
isolator. The length of the second ferrite was
chosen to provide 3 to 4 db isolation loss.
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Fig. 1—Basic elements of the high-power
S-band isolator.

A skew transverse magnetizing field was
employed which assisted in increasing the
bandwidth of the isolator. Magnetic field
skewing was produced by magnetizing the
upper and lower permanent magnets un-
equally. A reduction of magnet size was
accomplished by employing a vertically
constricted waveguide at some sacrifice of
the peak power handling capacity.

High average power performance was
measured with a nominal 600-800-watt CW
magnetron tunable over the 2.5 to 3.7-kmc
band. Isolation loss was checked at low and
high powers. Measurements of insertion loss
were made in detail at low power and
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checked at selected frequency points at high
power. This simplification in measurement
was permissible since- it was found that
insertion loss decreased very slightly at the
higher average powers.

In addition to isolation and insertion
loss the power absorbed by the ferrite was
determined with the isolator operating at
high average power in the reverse direction.
This technique enables the simulation of
high average power operation with moderate
power sources. From a knowledge of these
quantities it is possible to compute - the
effective average power capacity, Pesr, of
the isolator when operating into a given load
mismatch as follows:

Pest(1 — Tp) + TTrPess(1 — TR) = Pay
Paba

Pygp = 1
1+TFF(1_TR_F)

where P.ps is the average power absorbed
by the ferrite in the reverse direction.

T is the power reflection coefficient of
the load.

Tr is the isolator power transmission
coefficient in the insertion loss direc-
tion.

Tr is the power transmission coefficient
in the isolation loss direction.

The computed effective power capacity
vields a value which is less than the actual
power capacity. This discrepancy occurs
because the present measurement of the
absorbed power is made under conditions
wherein the heat absorbed is concentrated
in a limited portion of the ferrite length. In
practice a large proportion of the dissipated
power would be more uniformly distributed
throughout the sample as a result of the
insertion loss absorption.

For the ferrites and ferrite geometry em-
ployed in these studies, high-power non-
linear phenomena were not evident. In ex-
perimental circumstances, where ferrites of
lower resonance line width or higher satura-
tion magnetizations are employed, or where
higher RF powers and ferrite geometries
more susceptible to spin wave instabilities
are utilized, direct measurement of isolator
performance at the rated power levels must
be made to evaluate the nonlinear effects.

Fig. 2 presents performance data taken
for a water cooled isolator operating at 2 ef-
fective power levels; milliwatt and greater
than 1650 watts CW (2:1 load mismatch).
The ferrite element consisted of a combina-
tion of magnesium manganese and nickel
ferrite slabs positioned as shown in Fig. 1.
The isolation to insertion loss db ratio mani-
fested while the unit was absorbing 400
watts CW in the reverse direction was found
to be in excess of 20/1 over greater than 15
per cent bandwidth.

Fig. 3 presents performance data for an
isolator constructed from a single type of
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Fig. 2—Performance data for a high-power load iso-
lator using magnesium manganese R-1 and nickel
ferrite 106.
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ig. 3—Performance data for a high-power load iso-
lator using Nig,7Cus,sMbo,02Fes, 904 ferrite.
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Fig. 4—Performance data for a high-power load iso-
lator using Nio,7Cuo,sMny,e2Fe1, 504 and nickel fer-
rite, ferroxcube 106.

nickel ferrite of composition Nig 7Cuo.s-
Mng, 0:Fer.s0s. A noticeable frequency shift
of the peak isolation occurs as the power is
raised. The shift of the resonance peak to-
ward the higher frequencies arises from the
decrease of saturation magnetization of the
ferrite that accompanies ferrite heating.
Fig. 4 shows performance data of an iso-
lator constructed with the nickel ferrite used
in Fig. 3 plus a portion of a higher Curie
temperature nickel ferrite. Ferroxcube 106,
positioned on the load end of the unit. The
effective power capacity when operating
into a 2/1 load mismatch exceeded 3000
watts CW for 14 db or greater isolation and
0.6 db or less insertion loss throughout the
2.8 to greater than 3.6 kmc band (>25 per
cent bandwidth). A greater than 3700-watt
effective average power capacity is shown
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for curve B. A comparison of the data of
Figs. 3 and 4 reveals the improvement in
average power handling capacity obtained
by using a high Curie temperature tip of
ferrite positioned on the load end. The trend
of decreasing isolation loss at the low end of
the band as the effective power is raised is
markedly reduced in Fig. 4, where, for the
composite ferrite isolator, isolation loss at
2.9 kmc is greater than 15 db {or an effective
average input power of 3200 watts. Without
the high Curie temperature ferrite the isola-
tor of Fig. 3 displays a reverse loss of <13 db
at 2.9 kmc for an effective average input of
only 1500 watts.
E. N. SkomaL
Sylvania Microwave Phys. Lab.
Mountain View, Calif.

Reflection Coefficient of E-Plane
Tapered Waveguides*

In a paper by Matsumaruy,! formulas of
the input reflection coefficients of the line-
arly and sinusoidally E-plane tapered wave-
guides are given. Excellent agreements be-
tween the theoretical and experimental re-
sults have been found in both cases. In this
note we wish to add some analytical re-
marks.

The analysis given in the above paper is
different from the rigorous one given by
Walker and Wax.? The latter led to a non-
linear differential equation

dR 1—-R2 4

- 2vR -+ TR In{Z&)] =0 (1)
where R is the reflection coefficient, Z(x) is
the surge impedance of the tapered line, and
v=a-+jB is the wave propagation constant.
If the tapered line is loss-free, then we have
vy=7jB8. On the assumption that the phase
constant, 8 is independent of x, and that

R:1, Bolinder® obtained an approximate °

expression of the input reflection coefficient

R*zf

for a finite tapered line of length I, termi-
nated by Z(0) =Z,and Z() =Z, at each end.
It may be shown that Mr. Matsumaru’s
equations (4) and (12) are equivalent to (2)
in this communication. On substitution of
the surge impedance of a sinusoidal taper

7 + A VARSI A (Wx> (3)

Il Z@ ] e?ede (2)

l

into our (2), we obtain his (12). Substituting
the surge impedance of a linear taper

Z(x) = Zy+ (Lo — Z0)a/l )

Z(x) =

e — e 008

2
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into our (2), and letting x=y<41/2, we ob-
tain his (4), with its independent variable %
being replaced by y. Therefore, it appears
that Bolindet's assumption of R?<1 should
also apply to Mr. Matsumaru’s analytical
results. This is not, however, stated explicitly
in his paper.

For a linearly tapered line defined by (4),
(2) may be integrated exactly in terms of Ci
and 84, the cosine and sine integrals. The in-
put reflection coefficient is

R = %efuz{ [Ci(ug) — Ci(ul)]
— jSitw) — Situ) 1} (5)

where u1=281/(k—1), us=28lk/(k—1) and
k=2Z,/Z:,. This expression appears to be
somewhat simpler than Mr. Matsumaru’s
(8), and his (7), a binomial-expansion ap-
proximation, is not necessary in this case. If a
change of variable, #=28(g7'+x), is made,
his (3) leads directly to the above result—
our (5).

In the treatment of a smusoxdally ta-
pered line, noting that r=(Z; —~Z,) /(Z2-+21)
tends to zero first, and letting I tend to zero
next, Mr, Matsumara showed how his (15)
becomes

= (Za— Z)/(Zs + 20,

the reflection coefficient of two directly con-
nected waveguides. It is felt that this state-
ment, although correct, might mislead one
to think that Matsumaru’s (12) is exact. To
clarify this point, we let / in his (15) tend to
zero first and retain the higher order terms;
(15) then becomes

. Zo— 7 1 Z2~Z1>3
Im R = (222 4 (222
tl—r*% (Z2+Z1) + 3 <Zz+Z1 +
1 Z2
=7
n 7

Tt is seen that as / tends to zero, R tends to 3
In (Z2/Zy) rather than to (Zs—Z1)/(Z2+21).
This limiting case indicates somewhat the
approximate nature of Matsumaru's (12),
from which his (15) is derived. It might be
said that the approximation becomes in-
creasingly good as 7 tends to zero; then

lim R = —In éwé %

-0 2 Zo+Z1

It is also noted that our (5) also becomes
% In (Z3/Z:) asltends to zero. As long as we
use our (2) or its equivalent—Mr. Matsuma-
ru’s equations (4) and (12)—this is true, re-
gardless of the nature of Z(x) or type of
taper. This can be seen directly from our
(2), in which the phase factor tends to unity
as [ tends to zero. Direct integration gives
the proof.

Eq. (2) in this demonstration may be
considered as the first approximation of the
solution to our differential equation (1),
which—together with higher order approxi-
mations—has been discussed elsewhere.* In
general it may be said that if the length of
taper is longer than half of a guide-wave-
length, the second order approximation has
no significant effect.

Ricmarp F. H. Yanc
Andrew Corporation
Chicago, Illinois

4 1. Solymar, “On higher order approximations to
the solution of nonuniform transmission lines,” Proc,
IRE, vol. 45, pp. 1547-1548; November, 1937,
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Author's Comments

I am grateful to Mr. Yang for his re-
marks regarding my paper; his detailed re-
marks strengthen some of the weak points
in it.

First, his analysis of his (4) is known to
me, and I have no further comments to
malke on it. Next, his formula (5) is probably
quite useful in calculating the reflection co-
efficient of linear tapers. In the latter part of
his communication, he has made some re-
marks on the limiting cases of R. Although I
had previously considered these analytical
studies, I did not discuss them fully since
they seemed to be too detailed for my paper.

As I mentioned in my paper, the main
purpose was to present practical design data
rather than detailed analyses. [ would like to
take this opportunity to add some comments
on the experimental data described in my
paper. Figs. 1 and 2, plotted in the K-plane,
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Fig, 1—Results of experiments, part 1 (Z2/Z,=2.0).
Data are shown for linear-taper lengths from 4 to

17 cm,
input plane
r-§x =0 rHix
I
P - _\\\
T
/ ’ ~
/
/
0.7
/ e
7 .8
| R veun |-

%5.0.5

Fig. 2—Results of experiments, part 111 (Z,/Zs=2.4).
The normalized sinusoidal- taper length I/A; was
varied from 0.5 to 1.0.

show the reflection coefficients of the data
obtained from experiments, parts [ and [I1,
respectively. The conically looped circular
loci of R of the linear tapers in Fig. 1 show
the typical behavior for the cases of Z:>Z;.
It should be mentioned that the position of
R follows almost the course of one conical
cycle every half-wavelength (4,9 cm). For
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